Abstract

This article performs an exact analysis for a frictional triangular or cylindrical punch acting on the surface of magneto-electro-elastic materials. The punch moves relative to the surface of magneto-electro-elastic materials. Inside the contact area, the Coulomb friction law is applied. Eigenvalue distribution is analyzed, and then appropriate fundamental solutions are given. The stated problem is reduced to a system of singular integral equations of the second kind. The exact solution of the obtained singular integral equations makes it easy to get the explicit expressions of the surface physical quantities. Through plotting figures, the influences of the friction coefficient on contact behavior are shown and interesting results are observed. The in-plane stress, electric displacement and magnetic induction tend to be infinite near the leading edge of the frictional triangular punch, while having spikes at one edge of the frictional cylindrical punch, which may explain why surface damage occurs on the surface of magneto-electro-elastic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.