Abstract
The Steiner forest problem asks for a minimum weight forest that spans a given number of terminal sets. The problem has famous linear programming based 2-approximations [Agrawal et al., 1995; Goemans and Williamson, 1995; Jain, 2001] whose bottleneck is the fact that the most natural formulation of the problem as an integer linear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for the problem along with exact branch-and-bound based algorithms. While our new formulations cannot improve the integrality gap, we can prove that one of them yields stronger linear programming bounds than the two previous strongest formulations: The directed cut formulation [Balakrishnan et al., 1989; Chopra and Rao, 1994] and the advanced flow-based formulation by Magnanti and Raghavan [Magnanti and Raghavan, 2005]. In an experimental evaluation, we show that the linear programming bounds of the new formulations are indeed strong on practical instances and that our new branch-and-bound algorithms outperform branch-and-bound algorithms based on the previous formulations. Our formulations can be seen as a cut-based analogon to [Magnanti and Raghavan, 2005], whose existence was an open problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.