Abstract

The shortest path problems (SPPs) with learning effects (SPLEs) have many potential and interesting applications. However, at the same time they are very complex and have not been studied much in the literature. In this paper, we show that learning effects make SPLEs completely different from SPPs. An adapted A* (AA*) is proposed for the SPLE problem under study. Though global optimality implies local optimality in SPPs, it is not the case for SPLEs. As all subpaths of potential shortest solution paths need to be stored during the search process, a search graph is adopted by AA* rather than a search tree used by A*. Admissibility of AA* is proven. Monotonicity and consistency of the heuristic functions of AA* are redefined and the corresponding properties are analyzed. Consistency/monotonicity relationships between the heuristic functions of AA* and those of A* are explored. Their impacts on efficiency of searching procedures are theoretically analyzed and experimentally evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.