Abstract

The capacitated vehicle routing problem (CVRP) is the problem in which a set of identical vehicles located at a central depot is to be optimally routed to supply customers with known demands subject to vehicle capacity constraints. In this paper, we describe a new integer programming formulation for the CVRP based on a two-commodity network flow approach. We present a lower bound derived from the linear programming (LP) relaxation of the new formulation which is improved by adding valid inequalities in a cutting-plane fashion. Moreover, we present a comparison between the new lower bound and lower bounds derived from the LP relaxations of different CVRP formulations proposed in the literature. A new branch-and-cut algorithm for the optimal solution of the CVRP is described. Computational results are reported for a set of test problems derived from the literature and for new randomly generated problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.