Abstract
In this paper, an exact algorithm was proposed for optimal redundancy in a series system with multiple component choices. A reformulation of the nonseparable reliability function was approximated by a separable integer programming problem. The resulting separable nonlinear integer programming problem is used to compute upper bounds by Lagrangian relaxation and dual search. A special partition scheme was derived to reduce the duality gap in a branch-and-bound process, thus ensure the convergence of the algorithm. Computational results show that the algorithm is efficient for solving this class of reliability optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.