Abstract

The prediction of time series has both the theoretical value and practical significance in reality. However, since the high nonlinear and noises in the time series, it is still an open problem to tackle with the uncertainties and fuzziness in the forecasting process. In this article, an evolving recurrent interval type-2 intuitionistic fuzzy neural network (eRIT2IFNN) is proposed for time series prediction and regression problems. The eRIT2IFNN employs interval type-2 intuitionistic fuzzy sets to enhance the modeling of uncertainties by intuitionistic evaluation and noise tolerance of the system. In the eRIT2IFNN, the antecedent part of each fuzzy rule is defined using intuitionistic interval type-2 fuzzy sets, and the consequent realizes the Takagi–Sugeno–Kang type fuzzy inference mechanism. In order to utilize the prior knowledge including intuitionistic information, a local internal feedback is established by feeding the rule firing strength of each rule to itself eRIT2IFNN is fully adaptive to the evolving of sequence data by online learning of structure and parameters. A modified density-based clustering is implemented for the structure learning, where both densities and membership degrees are involved to determine the fuzzy rules. Performance of eRIT2IFNN is evaluated using a set of benchmark problems and compared with existing fuzzy inference systems. Moreover, the eRIT2IFNN is tested for identification of dynamics under both noise-free and noisy environments. Finally, a group of practical financial price-tracking problems including high-frequency data of financial future, commodity future and precious metal are used for the evaluation of the proposed inference system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.