Abstract

The role of cooperative effects arising from noncovalent attractive interactions as a vital factor governing stereoinduction in chiral H-bond catalyzed aza-Henry reactions is reported. Supporting this finding were density functional theory (DFT) calculations which revealed a shape and size dependency existed between the catalyst and substrates that when matched lead to high enantioselectivity, as reflected by favorable activation parameters. Associated with optimal catalyst and substrate pairing were a closed catalytic binding pocket and a synclinal orientation of the substrates that reinforced favorable stereoelectronic effects and dispersive type forces. Meanwhile, unfavorable steric interactions were found to be a dominant effect controlling diastereoselection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.