Abstract

In this paper, we introduce a novel framework to augment raw audio data for machine learning classification tasks. For the first part of our framework, we employ a generative adversarial network (GAN) to create new variants of the audio samples that are already existing in our source dataset for the classification task. In the second step, we then utilize an evolutionary algorithm to search the input domain space of the previously trained GAN, with respect to predefined characteristics of the generated audio. This way we are able to generate audio in a controlled manner that contributes to an improvement in classification performance of the original task. To validate our approach, we chose to test it on the task of soundscape classification. We show that our approach leads to a substantial improvement in classification results when compared to a training routine without data augmentation and training with uncontrolled data augmentation with GANs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.