Abstract

Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with learning. Initially, cognitive load theory's view of human cognitive architecture was assumed to apply to all categories of information. Based on Geary’s (Educational Psychologist 43, 179–195 2008; 2011) evolutionary account of educational psychology, this interpretation of human cognitive architecture requires amendment. Working memory limitations may be critical only when acquiring novel information based on culturally important knowledge that we have not specifically evolved to acquire. Cultural knowledge is known as biologically secondary information. Working memory limitations may have reduced significance when acquiring novel information that the human brain specifically has evolved to process, known as biologically primary information. If biologically primary information is less affected by working memory limitations than biologically secondary information, it may be advantageous to use primary information to assist in the acquisition of secondary information. In this article, we suggest that several cognitive load effects rely on biologically primary knowledge being used to facilitate the acquisition of biologically secondary knowledge. We indicate how incorporating an evolutionary view of human cognitive architecture can provide cognitive load researchers with novel perspectives of their findings and discuss some of the practical implications of this view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call