Abstract
Functional non-coding (fnc)RNAs are nucleotide sequences of varied lengths, structures, and mechanisms that ubiquitously influence gene expression and translation, genome stability and dynamics, and human health and disease. Here, to shed light on their functional determinants, we seek to exploit the evolutionary record of variation and divergence read from sequence comparisons. The approach follows the phylogenetic Evolutionary Trace (ET) paradigm, first developed and extensively validated on proteins. We assigned a relative rank of importance to every base in a study of 1070 functional RNAs, including the ribosome, and observed evolutionary patterns strikingly similar to those seen in proteins, namely, (1) the top-ranked bases clustered in secondary and tertiary structures. (2) In turn, these clusters mapped functional regions for catalysis, binding proteins and drugs, post-transcriptional modification, and deleterious mutations. (3) Moreover, the quantitative quality of these clusters correlated with the identification of functional regions. (4) As a result of this correlation, smoother structural distributions of evolutionary important nucleotides improved functional site predictions. Thus, in practice, phylogenetic analysis can broadly identify functional determinants in RNA sequences and functional sites in RNA structures, and reveal details on the basis of RNA molecular functions. As example of application, we report several previously undocumented and potentially functional ET nucleotide clusters in the ribosome. This work is broadly relevant to studies of structure-function in ribonucleic acids. Additionally, this generalization of ET shows that evolutionary constraints among sequence, structure, and function are similar in structured RNA and proteins. RNA ET is currently available as part of the ET command-line package, and will be available as a web-server.
Highlights
Functional non-codingRNAs are a broad class of functional macromolecules that regulate transcription and translation, maintain genome stability [1], and play a role in diseases
Mutations in mitochondrial RNAse P are associated with cartilage-hair hypoplasia [3], deletion of promoter that drives expression of HBII-85 snoRNAs contributes to Prader-Willi syndrome [4], and mutations in hTR, RNA component of DNA telomerase, promote Dyskeratosis congenita [5]
The full-length hammerhead sequence is 60 nucleotides long, and the structure is defined by three short helices that meet at a junction (Fig 3A, PDBID 2QUS [48])
Summary
Functional non-coding (fnc)RNAs are a broad class of functional macromolecules that regulate transcription and translation, maintain genome stability [1], and play a role in diseases. They are found across evolution and include both classical as well as several new forms discovered over the past 30 years. Long non-coding RNA MALAT1 has been directly linked to metastasis in lung and gastric cancer [8, 9]. These and other fncRNAs represent an entirely new class of druggable targets. Given the growing recognition of the role of fncRNA in human health [12], it is important to understand the determinants of function in these molecules
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.