Abstract

Many engineering optimization problems frequently encounter discrete variables as well as continuous variables and the presence of nonlinear discrete variables considerably adds to the solution complexity. Very few of the existing methods can find a globally optimal solution when the objective functions are non-convex and non-differentiable. In this paper, we present a mixed-variable evolutionary programming (MVEP) technique for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. The MVEP provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Some examples of mixed-variable optimization problems in the literature are tested, which demonstrate that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.