Abstract

Abstract Feature selection (FS) aims to identify the most relevant and non-redundant feature subset for improving the classification accuracy, which is regarded as a NP-hard problem. Some heuristic methods, such as particle swarm optimization (PSO) have achieved great success, however, with the increase of feature quantity, the solution space is too large, resulting in lower search efficiency. Recent discretization-based FS methods map the search of feature domain into cut-point domain, which shrinks the solution space and improve the performances significantly. In this paper, considering the conflicts between different objectives, we proposed an evolutionary multi-objective optimization framework for discretization-based FS. To obtain the Pareto solutions, a flexible cut-point PSO (FCPSO) which can select an arbitrary number of cut-points for discretization is introduced to help better explore the relevant features. In FCPSO, a particle update and a novel adaptive mutation operator are alternatively used to effectively find the relevant features and remove the redundant features. At last, to select the best feature subset, a Pareto ensemble method is designed to generate a number of feasible solutions based on Pareto set followed by a hierarchical solution selection process. We implemented the proposed framework by using three representative multi-objective evolutionary algorithms and compared them with some state-of-the-art methods. Experimental results on ten benchmark microarray gene datasets demonstrate that our proposed framework significantly outperforms other methods in terms of test classification accuracy with a competitive size of feature subset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.