Abstract
The peer review system aims to be effective in separating unacceptable from acceptable manuscripts. However, a reviewer can distinguish them or not. If reviewers distinguish unacceptable from acceptable manuscripts they use a fine partition of categories. But, if reviewers do not distinguish them they use a coarse partition in the evaluation of manuscripts. Most reviewers learned how to evaluate a manuscript from good and bad experiences, and they have been characterized as zealots (who uncritically favor a manuscript), assassins (who advise rejection much more frequently than the norm), and mainstream referees. In this paper we use the quasi-species model to describe the evolution of recommendation profiles in peer review. A recommendation profile is composed of a reviewer recommendation for each manuscript category under a particular categorization of manuscripts (fine or coarse). We see the reviewer mind as being built up with recommendation profiles. Assassins, zealots and mainstream reviewers are “ecologically” interrelated species whose progeny tend to mutate through errors made in the process of reviewer training. We define the recommendation profile as replicator, and selection arises because different types of recommendation profiles tend to replicate at different rates. Our results help to explain why assassins and zealots evolutionary appear in peer review because of the evolutionary success of reviewers who do not distinguish acceptable and unacceptable manuscripts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.