Abstract
Over the last years, recommendation techniques have emerged to cope with the challenging task of optimal service selection, and to help consumers satisfy their needs and preferences. However, most existing models on service recommendation only consider the traditional user-service relation, while in the real world, the perception and popularity of Web services may depend on several conditions including temporal, spatial and social constraints. Such additional factors in recommender systems influence users’ preferences to a large extent. In this paper, we propose a context-aware Web service recommendation approach with a specific focus on time dimension. First, K-means clustering method is hybridized with a multi-population variant of the well-known Particle Swarm Optimization (PSO) in order to exclude the less similar users which share few common Web services with the active user in specific contexts. Slope One method is, then, applied to predict the missing ratings in the current context of user. Finally, a recommendation algorithm is proposed in order to return the top-rated services. Experimental studies confirmed the accuracy of our recommendation approach when compared to three existing solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.