Abstract

In this article, we present a distributed robot 3D formation system optimally parameterised by a hybrid evolutionary algorithm (EA) in order to improve its efficiency and robustness. To achieve that, we first describe the novel distributed formation algorithm3 (DFA3), the proposed EA, and the two crossover operators to be tested. The EA hyperparameterisation is performed by using the irace package and the evaluation of the three case studies featuring three, five, and ten unmanned aerial vehicles (UAVs) is performed through realistic simulations by using ARGoS and ten scenarios evaluated in parallel to improve the robustness of the configurations calculated. The optimisation results, reported with statistical significance, and the validation performed on 270 unseen scenarios show that the use of a metaheuristic is imperative for such a complex problem despite some overfitting observed under certain circumstances. All in all, the UAV swarm self-organised itself to achieve stable formations in 95% of the scenarios studied with a plus/minus ten percent tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.