Abstract
Association rules are one of the most frequently used tools for finding relationships between different attributes in a database. There are various techniques for obtaining these rules, the most common of which are those which give categorical association rules. However, when we need to relate attributes which are numeric and discrete, we turn to methods which generate quantitative association rules, a far less studied method than the above. In addition, when the database is extremely large, many of these tools cannot be used. In this paper, we present an evolutionary tool for finding association rules in databases (both small and large) comprising quantitative and categorical attributes without the need for an a priori discretization of the domain of the numeric attributes. Finally, we evaluate the tool using both real and synthetic databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.