Abstract
In this paper we consider a system of reaction–diffusion–advection equations with a free boundary, which arises in a competition ecological model in heterogeneous environment. The evolution of the free-boundary problem is discussed, which is an extension of the results of Du and Lin (Discrete Contin. Dynam. Syst. B19 (2014), 3105–3132). Precisely, when u is an inferior competitor, we prove that (u, v) → (0, V) as t→∞. When u is a superior competitor, we prove that a spreading–vanishing dichotomy holds, namely, as t→∞, either h(t)→∞ and (u, v) → (U, 0), or limt→∞h(t) < ∞ and (u, v) → (0, V). Moreover, in a weak competition case, we prove that two competing species coexist in the long run, while in a strong competition case, two species spatially segregate as the competition rates become large. Furthermore, when spreading occurs, we obtain some rough estimates of the asymptotic spreading speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.