Abstract
We attempt to reduce the number of physical ingredients needed to model the phenomenon of tulip-flame inversion to a bare minimum. This is achieved by synthesising the nonlinear, first-order Michelson-Sivashinsky (MS) equation with the second order linear dispersion relation of Landau and Darrieus, which adds only one extra term to the MS equation without changing any of its stationary behaviour and without changing its dynamics in the limit of small density change when the MS equation is asymptotically valid. However, as demonstrated by spectral numerical solutions, the resulting second-order nonlinear evolution equation is found to describe the inversion of tulip flames in good qualitative agreement with classical experiments on the phenomenon. This shows that the combined influences of front curvature, geometric nonlinearity and hydrodynamic instability (including its second-order, or inertial effects, which are an essential result of vorticity production at the flame front) are sufficient to reproduce the inversion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.