Abstract

The aim of this study is to determine what loads are likely to be applied to the head in the event of a horse falling onto it and to determine by how much a typical equestrian helmet reduces these loads. An instrumented headform was designed and built to measure applied dynamic loads from a falling horse. Two differently weighted equine cadavers were then dropped repeatedly from a height of 1 m (theoretical impact velocity of 4.43 m/s) onto both the un-helmeted and helmeted instrumented headforms to collect primary force–time history data. The highest mean peak loads applied to the headform by the lighter horse were measured at the bony sacral impact location (15.57 kN ± 1.11 SD). The lowest mean peak loads were measured at the relatively fleshier right hind quarter (7.91 kN ± 1.84 SD). For the heavier horse, highest mean peak loads applied to the headform were measured at the same bony sacral impact location (16.02 kN ± 0.83 SD), whilst lowest mean peak loads were measured at the more compliant left hind quarter (10.47 kN ± 1.08 SD). When compared with the un-helmeted mean values, a reduction of 29.7% was recorded for the sacral impact location and a reduction of 43.3% for the lumbosacral junction location for helmeted tests. Notably, all measured loads were within or exceeded the range of published data for the fracture of the adult lateral skull bone. Current helmet certification tests are not biofidelic and inadequately represent the loading conditions of real-world “lateral crush” accidents sustained in equestrian sports. This work presents the first ever evidence basis upon which any future changes to a certification standards test method might be established, thereby ensuring that such a test would be both useful, biofidelic, and could ensure the desired safety outcome.

Highlights

  • Equestrian helmet certification tests are designed to ensure that a minimum performance and quality level is achieved in terms of helmet crashworthiness and structural integrity

  • The most repeatable data were from the lumbosacral junction and sacral vertebrae impact locations

  • The lowest mean peak loads were measured at the right hind quarter (7.91 kN)

Read more

Summary

Introduction

Equestrian helmet certification tests are designed to ensure that a minimum performance and quality level is achieved in terms of helmet crashworthiness and structural integrity. As equestrian sports are high risk [1,2,3,4,5], with the primary type of accident involving a fall from the horse resulting in a head impact [6], it makes good sense that the main helmet functional test in the standards involves recreating some simplified impact conditions [7,8,9]. The most significant test in most equestrian helmet standards is referred to as the lateral crush test, referred to as the lateral deformation test or rigidity test. Sci. 2020, 10, 2623; doi:10.3390/app10072623 www.mdpi.com/journal/applsci Appl.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.