Abstract

The modern power system is evolving towards a new generation of smart grid, with significant benefits from the latest computer-based communication network technologies. Furthermore, as the incremental deployment of phase measurements units (PMUs) and the use of Smart Meters, there will be a substantial increase of the real-time system measurements. Under this trend, event-triggered control (ETC) will play an important role in reducing the communication and computation cost. In this paper, a novel ETC architecture design for load frequency control (LFC) with supplementary adaptive dynamic programming (ADP) is presented. The primary proportional-integral (PI) controller uses different proportional and integral thresholds for updating the actions, while the supplementary ADP controller is updated in an aperiodic manner. A strategy for the parameters calculation is introduced in a systematic way, and theoretical analysis of the ultimate boundedness for the closed-loop event-triggered system is also included. Simulation studies are carried out on one-area and three-area IEEE LFC benchmarks, and the results demonstrate the efficiency and effectiveness of the proposed design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.