Abstract

This article describes a new automated method for the controlled occlusion of vision during natural tasks. The method permits the time course of the presence or absence of visual information to be linked to identifiable events within the task of interest. An example application is presented in which the method is used to examine the ability of cricket batsmen to pick up useful information from the prerelease movement patterns of the opposing bowler. Two key events, separated by a consistent within-action time lag, were identified in the cricket bowling action sequence-namely, the penultimate foot strike prior to ball release (Event 1), and the subsequent moment of ball release (Event 2). Force-plate registration of Event 1 was then used as a trigger to facilitate automated occlusion of vision using liquid crystal occlusion goggles at time points relative to Event 2. Validation demonstrated that, compared with existing approaches that are based on manual triggering, this method of occlusion permitted considerable gains in temporal precision and a reduction in the number of unusable trials. A more efficient and accurate protocol to examine anticipation is produced, while preserving the important natural coupling between perception and action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.