Abstract

In recent years, event-based social network (EBSN) platforms have increasingly entered people’s daily life and become more and more popular. In EBSNs, event recommendation is a typical problem which recommends interested events to users. Different from traditional social networks, both online and off-line factors play an important role in EBSNs. However, the existing methods do not make full use of the online and off-line information, which may lead to a low accuracy, and they are also not efficient enough. In this paper, we propose a novel event recommendation model to solve the above shortcomings. At first, a feature extraction phase is constructed to make full use of the EBSN information, including spatial feature, temporal feature, semantic feature, social feature and historical feature. And then, we transform the recommendation problem to a classification problem and ELM is extended as the classifier in the model. Extensive experiments are conducted on real EBSN datasets. The experimental results demonstrate that our approach is efficient and has a better performance than the existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.