Abstract

This paper describes the development of a discrete-event simulation framework that emulates the interactions between the power grid and plug-in hybrid electric vehicles (PHEVs) and examines whether the capacity of the existing power system can meet the PHEV load demand. The probability distribution functions for the arrival time and energy demand of each vehicle are extracted from real-world statistical transportation data. The power grid's limited generation and transmission capacities are considered to be the major constraints. Therefore, vehicles may have to wait to receive any charge. The proposed simulation framework is justified and described in some detail in applying it to two real cases in the United States to determine certain regions' grid potential to support PHEVs. Both Level-1 and -2 charging are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.