Abstract
Understanding the progression of neurological diseases is vital for accurate and early diagnosis and treatment planning. We introduce a new characterization of disease progression, which describes the disease as a series of events, each comprising a significant change in patient state. We provide novel algorithms to learn the event ordering from heterogeneous measurements over a whole patient cohort and demonstrate using combined imaging and clinical data from familial Alzheimer's and Huntington's disease cohorts. Results provide new detail in the progression pattern of these diseases, while confirming known features, and give unique insight into the variability of progression over the cohort. The key advantage of the new model and algorithms over previous progression models is that they do not require a priori division of the patients into clinical stages. The model and its formulation extend naturally to a wide range of other diseases and developmental processes and accommodate cross-sectional and longitudinal input data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.