Abstract
AbstractEvaporation is a principal factor in the hydrological cycle and energy exchange; however, estimations of evaporation include large uncertainties. In this study, a modified estimation of evaporation based on empirical linearly simplified Penman evaporation (PES) is proposed, soil moisture and precipitation are used to correct the land surface evaporation estimation, and the temporal and spatial characteristics of the corrected evaporation (CE) are investigated globally. The results show that CE is strong at low latitudes and weak at high latitudes. CE has obvious seasonal variation, ranging from 0.2 to 4.0 mm day−1; CE is prominent in summer but feeble in winter. Compared to PES, CE is generally weaker in most regions, especially in arid regions, with differences of more than 9 mm day−1. CE agrees well with evaporation derived from FLUXNET-Model Tree Ensemble (FLUXNET-MTE), MERRA, and GLDAS. In general, the root-mean-square error (RMSE) between annual CE and FLUXNET-MTE is less than 0.2 mm day−1, and CE is about 5%–10% less than the evaporation of FLUXNET-MTE. In the arid regions, the maximum CE almost occurs in the month with the strongest precipitation; in the tropical regions, soil moisture enhances CE only when precipitation is less. In the context of global temperature rise, PES always shows an apparent increasing trend due to the water supply is not considered; however, CE decreases in western Asia, the western United States, the Amazon basin, and Central Africa, but weakly increases in the other study regions from 1984 to 2013. This study provides a method for estimating evaporation considering more restrictive factors on evaporation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.