Abstract

Epidermal growth factor receptor (EGFR) mutation is predictive for the efficacy of EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer (NSCLC) treatment. We evaluated the performance, sensitivity, and concordance between five EGFR tests. DNA admixtures (n = 34; 1%-50% mutant plasmid DNA) and samples from NSCLC patients [116 formalin-fixed paraffin-embedded (FFPE) tissue, 29 matched bronchofiberscopic brushing (BB) cytology, and 20 additional pleural effusion (PE) cytology samples] were analyzed. EGFR mutation tests were PCR-Invader, peptide nucleic acid-locked nucleic acid PCR clamp, direct sequencing, Cycleave, and Scorpion Amplification Refractory Mutation System (ARMS). Analysis success, mutation status, and concordance rates were assessed. All tests except direct sequencing detected four mutation types at ≥1% mutant DNA. Analysis success rates were 91.4%-100% (FFPE) and 100% (BB and PE cytology), respectively. Inter-assay concordance rates of successfully analyzed samples were 94.3%-100% (FFPE; kappa coefficients: 0.88-1.00), 93.1%-100% (BB cytology; 0.86-1.00), and 85.0%-100% (PE cytology; 0.70-1.00), and 93.1%-96.6% (0.86-0.93) between BB cytology and matched FFPE. All EGFR assays carried out comparably in the analysis of FFPE and cytology samples. Cytology-derived DNA is a viable alternative to FFPE samples for analyzing EGFR mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.