Abstract
ABSTRACTObjective: Intersection movement assist (IMA) has been recognized as one of the prominent countermeasures to reduce angle crashes at intersections, which constitute 22% of total crashes in the United States. Utilizing vehicle-based sensors, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications, IMA offers extended vision to provide early warning for an imminent crash. However, most of IMA-related research implements their methods and strategies only in simulations, test tracks, or driving simulator studies that have quite a few assumptions and limitations and hence the effectiveness evaluations reported may not be transferable or comparable.Methods: This study seeks to develop a generalized evaluation scheme that can be used not only to assess the effectiveness of IMA on improving traffic safety at intersections but to facilitate comparisons across similar studies. The proposed evaluation scheme utilizes the concepts of traffic conflict in terms of time-to-collision (TTC) as a crash surrogate. This approach avoids the issue of having insufficient crash frequency data for system evaluation. To measure the effectiveness of IMA on reducing traffic conflicts, a relative risk is calculated for comparing the risk of with/without using the IMA. As a proof-of-concept study, this study applied the proposed evaluation scheme and reported the effectiveness of IMA on improving traffic safety in a field operation test (FOT). Seven test scenarios were conducted at 4 intersections, and a total of 40 participants were recruited to use the IMA for 6 months.Results: It was estimated that IMA users have 26% fewer conflicts with TTC less than 5 s and have 15% fewer conflicts with TTC less than 4 s. However, the results vary across different sites and different definitions of conflicts in terms of TTC.Conclusions: Overall, IMA is promising to effectively reduce angle crashes related to sight obstruction and has potential to reduce not only crash frequency but crash severity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.