Abstract

The ability to visualize cell motility occurring deep in the context of opaque tissues will allow many currently intractable issues in developmental biology and organogenesis to be addressed. In this study, we compare two-photon excitation with laser scanning confocal and conventional digital deconvolution fluorescence microscopy, using the same optical configuration, for their ability to resolve cell shape deep in Xenopus gastrula and neurula tissues. The two-photon microscope offers better depth penetration and less autofluorescence compared to confocal and conventional deconvolution imaging. Both two-photon excitation and confocal microscopy also provide improved rejection of “out-of-focus” noise and better lateral and axial resolution than conventional digital deconvolution microscopy. Deep Xenopus cells are best resolved by applying the digital deconvolution method on the two-photon images. We have also found that the two-photon has better depth penetration without any degradation in the image quality of interior sections compared to the other two techniques. Also, we have demonstrated that the quality of the image changes at different depths for various excitation powers. Microsc. Res. Tech. 47:172–181, 1999. © 1999 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.