Abstract

BackgroundThe combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate.ResultsWe compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures.ConclusionT-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially.

Highlights

  • The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray)

  • The cyanine 3 (Cy3), or green, channel of regulation microarrays generally contains the total DNA sample that gives the reference baseline signal, and the cyanine 5 (Cy5), or red, channel contains an experimentally enriched DNA sample, extracted using a specific antibody binding to a DNAinteracting protein (ChIP) or directly to methylated CpGs on the DNA (MeDIP)

  • While the log-ratio between the channel signals represents the differential expression between two conditions in transcriptomics studies, for regulation microarrays it is used as a measure of enrichment: the higher the log-ratio of a probe or set of tiling probes, the higher the likelihood that the corresponding region in the genome has a high level of methylation or is targeted by a DNA-interacting protein

Read more

Summary

Introduction

The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. While the log-ratio between the channel signals represents the differential expression between two conditions in transcriptomics studies, for regulation microarrays it is used as a measure of enrichment: the higher the log-ratio of a probe or set of tiling probes, the higher the likelihood that the corresponding region in the genome has a high level of methylation or is targeted by a DNA-interacting protein

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call