Abstract

In this paper, the evaluation of the mechanical and hygro-thermal properties of expanded polystyrene-sanded lightweight concrete (EPSLC) was examined. Evaluated are the mechanical properties in terms of density; and the hygro-thermal property using water absorption (capillary absorption and total immersion) as measures. The research used 30% volume of EPS to replace natural coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction. The high rate of water absorption at the early periods of the test has corresponding capillary coefficient of steep slope within the same period. The relationship between the variables Q the water absorption per unit area of the specimen and K the capillary coefficient, is that as the water absorption gets higher, so does the capillary coefficient and the percentage of the variation is expressed by the correlation coefficient R2. Therefore, the values of R2 as depicted in the graphs shows a high percentage of variation. The moisture capacity is 6.9%. All the laboratory tests were, conducted in accordance with standard codes of practice. The significance of the research is that innovative technology is employed to modify and improve processes in construction industry, thus, enhancing sustainable environmental, management of industrial waste, and cheaper and economic construction. With the 30% replacement of coarse aggregate, the density and water absorption properties of concrete produced are within acceptable limits. Therefore, EPS can be used to produce lightweight concrete that will perform the required function at this level of replacement.

Highlights

  • The continuous use of natural materials in construction especially in the production of concrete is having a devastating effect on bio-diversity and the ecosystem

  • The concrete bulk and oven dry densities were obtained as 1789 KN/m3 and 1674 kg/m3 respectively, while the total water and capillary water absorption increases with time of suction

  • Dangote brand of ordinary Portland cement (OPC) of grade 42.5R conforming to BS and ASTM standards commonly used in concrete, free from hard lumps and of uniform colour with medium rate of hardening used as the binder was bought from local cement market in kaura Namoda

Read more

Summary

Introduction

The continuous use of natural materials in construction especially in the production of concrete is having a devastating effect on bio-diversity and the ecosystem. It is because of the environmental consequences of the continuous exploitation of this natural resource that the professionals in the construction industries and built environment have always emphasized on the need to employ alternative materials in place of cement and aggregates. In this research, expanded polystyrene (EPS) was introduced as a partial replacement of coarse aggregate to produce a lightweight concrete, which is expected to be economical, serviceable and meet the required standards for lightweight concretes. Laboratory experiments were conducted on the qualities of concrete produced with this material as lightweight aggregate based on accepted standard codes of practice for concrete

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call