Abstract

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

Highlights

  • Lateralized brain regions direct functions such as language and visuospatial processing

  • Does functional connectivity lateralization reflect structural asymmetry or does it represent a lateralized difference in the strength of synaptic connections? Does a whole-brain phenotype of relatively greater ‘‘left-brain’’ or ‘‘right-brain’’ functional specialization across individuals exist, or are lateralized connections in different brain networks independent of each other within an individual? Are these connectivity patterns modified with age, as the brain matures into an adult phenotype? In this manuscript, we address these questions and find that lateralized regions create left- and rightlateralized networks, lateralized connections are independent from one another across individuals, and that the majority of functional lateralization occurs before age seven

  • By comparing the magnitude of functional connectivity in a large multi-site cohort (n = 1011) of subjects, we demonstrate that a left-dominant network and a right-dominant network can be defined in which discrete hubs show consistent lateralization among connections between the respective left- and righthemispheric hubs

Read more

Summary

Introduction

Lateralized brain regions direct functions such as language and visuospatial processing. In most right-handed individuals, paying attention to stimuli involving language elicits brain activity lateralized to the left hemisphere, whereas paying attention to stimuli involving visuospatial processing elicits brain activity lateralized to the right hemisphere [1,2,3,4]. Previous studies of brain laterality are largely limited to regional assessment of specialized functions and differences in structural lateralization. A diffusion tensor study of a predefined brain parcellation using graph-theoretical methods showed increased efficiency and connectedness within the right hemisphere, but with regions of greatest network centrality in the left hemisphere [14]. Additional asymmetries in gray matter volume have been observed within nodes of the default mode network [15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.