Abstract

Abstract A series of experiments have been conducted using the Coupled Ocean–Atmosphere Mesoscale Prediction System–Tropical Cyclone (COAMPS-TC) to assess the impact of horizontal resolution on hurricane intensity prediction for 10 Atlantic storms during the 2005 and 2007 hurricane seasons. The results of this study from the Hurricane Katrina (2005) simulations indicate that the hurricane intensity and structure are very sensitive to the horizontal grid spacing (9 and 3 km) and underscore the need for cloud microphysics to capture the structure, especially for strong storms with small-diameter eyes and large pressure gradients. The high resolution simulates stronger vertical motions, a more distinct upper-level warm core, stronger upper-level outflow, and greater finescale structure associated with deep convection, including spiral rainbands and the secondary circulation. A vortex Rossby wave (VRW) spectrum analysis is performed on the simulated 10-m winds and the NOAA/Hurricane Research Division (HRD) Real-Time Hurricane Wind Analysis System (H*Wind) to evaluate the impact of horizontal resolution. The degree to which the VRWs are adequately resolved near the TC inner core is addressed and the associated resolvable wave energy is explored at different grid resolutions. The fine resolution is necessary to resolve higher-wavenumber modes of VRWs to preserve more wave energy and, hence, to attain a more detailed eyewall structure. The wind–pressure relationship from the high-resolution simulations is in better agreement with the observations than are the coarse-resolution simulations for the strong storms. Two case studies are analyzed and overall the statistical analyses indicate that high resolution is beneficial for TC intensity and structure forecasts, while it has little impact on track forecasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call