Abstract

The structures and interaction energies of 21 binary complexes of fucose and glucose with toluene, 3-methylindole or p-hydroxytoluene, evaluated at the DFT-D level, are used to judge the accuracy of the GLYCAM06 and MM3 force fields, and the PM3-D* molecular orbital method for modelling carbohydrate–arene interactions. The accuracy of the DFT-D method is substantiated by comparison with high level CCSD(T) calculations on a small number of representative complexes. It is found that a correct description of the intermolecular dispersive interactions is essential. Both the PM3-D* method and the GYLCAM06 force field yield interaction energies within 1 kcal mol −1 of the DFT-D values, whilst those from the MM3 force field are in error by more than 2 kcal mol −1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.