Abstract

The injection of water droplets into compressor inlet ducting is now commonly used as a means of boosting the output from industrial gas turbines. The chief mechanisms responsible for the increase in power are the reduction in compressor work per unit flow and the increase in mass flow rate, both of which are achieved by evaporative cooling upstream of and within the compressor. This paper examines the impact of such evaporative processes on compressor operation, focussing particular attention on cases with substantial overspray—i.e., for which significant evaporation takes place within the compressor itself, rather than in the inlet. A simple numerical method is described for the computation of wet compression processes, based on a combination of droplet evaporation and mean-line calculations. The method is applied to a “generic” compressor geometry in order to investigate the nature of the off-design behavior that results from evaporative cooling. Consideration is also given to the efficiency of the compression process, the implications for choking and stall, and the magnitude of the thermodynamic loss resulting from irreversible phase change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.