Abstract

The fundamental design for a gas-cooled reactor relies on the behavior of the coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles, consisting of pyrolytic carbon and silicon carbide layers, act as a pressure vessel that retains fission products. Many more fuel particles have failed in US irradiations than would be expected when only one-dimensional pressure vessel failures are considered. Several multi-dimensional failure mechanisms that may have contributed to these failures have been previously studied, such as (1) irradiation-induced shrinkage cracks in the inner pyrocarbon (IPyC) layer, (2) partial debonding between the IPyC and SiC layers, and (3) deviations from a perfectly spherical shape. A further phenomenon that could lead to particle failures is thinning of the SiC layer caused by either thermal decomposition or interaction with fission products. Results of a study of the effects of SiC thinning and criteria for evaluating this behavior in a fuel performance code are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.