Abstract

To investigate whether the low-intensity electromagnetic waves transmitted by cell phones cause histopathological or ultrastructural changes in the testes of rats. Wistar-Kyoto male rats were placed into either a control group or a group that was exposed to an electromagnetic field (EMF). Two cell phones with Specific Absorbation Rate values of 1.58 were placed and left off in cages that housed 15 rats included in the control group, and four cell phones were placed and left on in cages that housed 30 rats included in the experimental group. After 3 months, weights, seminiferous tubule diameters, and spermatogenic cell conditions of all testes of the rats were evaluated. One half of each testis was examined also under an electron microscope. No significant differences were observed between the testis weights, seminiferous tubule diameters, and histopathological evaluations between rats that had and had not been exposed to EMF. Electron microscope analysis revealed that the membrana propria thickness and the collagen fiber contents were increased and the capillary veins extended in the experimental group. Common vacuolization in the cytoplasm of the Sertoli cells, growth of electron-dense structures, and existence of large lipid droplets were noted as the remarkable findings of this study. Although the cells that had been exposed to long-term, low-dose EMF did not present any findings that were contrary to the control conditions, the changes observed during ultrastructural examination gave the impression that significant changes may occur if the study period were to be extended. Longer studies are needed to better understand the effects of EMFs on testis tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.