Abstract
ABSTRACT The Fermi/GBM instrument is a vital source of detections of gamma-ray bursts and has an increasingly important role to play in understanding gravitational-wave transients. In both cases, its impact is increased by accurate positions with reliable uncertainties. We evaluate the RoboBA and BALROG algorithms for determining the position of gamma-ray bursts detected by the Fermi/GBM instrument. We construct a sample of 54 bursts with detections both by Swift/BAT and by Fermi/GBM. We then compare the positions predicted by RoboBA and BALROG with the positions measured by BAT, which we can assume to be the true position. We find that RoboBA and BALROG are similarly precise for bright bursts whose uncertainties are dominated by systematic errors, but RoboBA performs better for faint bursts whose uncertainties are dominated by statistical noise. We further find that the uncertainties in the positions predicted by RoboBA are consistent with the distribution of position errors, whereas BALROG seems to be underestimating the uncertainties by a factor of about 2. Additionally, we consider the implications of these results for the follow-up of the optical afterglows of Fermi/GBM bursts. In particular, for the DDOTI wide-field imager we conclude that a single pointing is best. Our sample would allow a similar study to be carried out for other telescopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.