Abstract

ABSTRACTThe spatial and temporal consistency of seasonal air temperature and precipitation in eight widely used gridded observation-based climate datasets (CANGRD, CRU-TS3.1, CRUTEM4.1, GISTEMP, GPCC, GPCP, HadCRUT3, and UDEL) and eight reanalyses (20CR, CFSR, ERA-40, ERA-Interim, JRA25, MERRA, NARR, and NCEP2) was evaluated over the Canadian Arctic for the 1950–2010 period. The evaluation used the CANGRD dataset, which is based on homogenized temperature and adjusted precipitation from climate stations, as a reference. Dataset agreement and bias were observed to exhibit important spatial, seasonal, and temporal variability over the Canadian Arctic with the largest spread occurring between datasets over mountain and coastal regions and over the Canadian Arctic Archipelago. Reanalysis datasets were typically warmer and wetter than surface observation-based datasets, with CFSR and 20CR exhibiting biases in total annual precipitation on the order of 300 mm. Warm bias in 20CR exceeded 12°C in winter over the western Arctic. Analysis of the temporal consistency of datasets over the 1950–2010 period showed evidence of discontinuities in several datasets as well as a noticeable increase in dataset spread in the period after approximately 2000. Declining station networks, increased automation, and the inclusion of new satellite data streams in reanalyses are potential contributing factors to this phenomenon. Evaluation of trends over the 1950–2010 period showed a relatively consistent picture of warming and increased precipitation over the Canadian Arctic from all datasets, with CANGRD giving moistening trends two times larger than the multi-dataset average related to the adjustment of the station precipitation data. The study results indicate that considerable care is needed when using gridded climate datasets in local or regional scale applications in the Canadian Arctic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.