Abstract
Many fMRI experiments have a common objective of identifying active voxels in a neuroimaging dataset. This is done in single subject experiments, for example, by performing individual voxel-wise tests of the null hypothesis that the observed time course is not significantly related to an assigned reference function. A voxel activation map is then constructed by applying a thresholding rule to the resulting statistics (e.g., t-statistics). Typically the task-related activation is expected to occur in clusters of voxels rather than in isolated single voxels. A variety of spatial thresholding techniques have been proposed to reflect this belief, including smoothing the raw t-statistics, cluster size inference, and spatial mixture modeling. We study two aspects of these spatial thresholding procedures applied to single subject fMRI analysis through simulation. First, we examine the performance of these procedures in terms of sensitivity to detect voxel activation, using receiver operating characteristic curves. Second, we consider the accuracy of these spatial thresholding procedures in estimation of the size of the activation region, both in terms of bias and variance. The findings indicate that smoothing has the highest sensitivity to modest magnitude signals, but tend to overestimate the size of the activation region. Spatial mixture models estimate the size of a spatially distributed activation region well, but may be less sensitive to modest magnitude signals, indicating that additional research into more sensitive spatial mixture models is needed. Finally, the methods are illustrated with a real bilateral finger-tapping fMRI experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.