Abstract

A 3-month-old girl and a 13-month-old boy with vitamin B12-unresponsive methylmalonic acidaemia were studied to determine responses to varying levels of protein intake of growth, nitrogen balance and organic acid metabolism. A linear increase in the excretion of methylmalonic acid was observed in both patients above a critical level of protein intake. The inflection point was judged to reflect a ceiling above which amino acid intake exceeded requirements and catabolism was initiated. Below this point in each infant there was a plateau of minimal excretion of methylmalonic acid. Within this plateau level a reasonable rate of growth and metabolic stability were achieved at intakes between 0.70 and 0.75 and between 0.75 and 1.17 g protein kg-1, respectively, indicating that there is a range of protein tolerance and the importance of an individual approach to the provision of protein in patients with methylmalonic acidaemia. In the 3-month-old infant, nitrogen equilibrium was achieved at protein intakes above 0.6 g kg-1 and modest nitrogen retention was attained at a protein intake of 0.75 g kg-1, a level at which the excretion of methylmalonic acid was minimal and weight gain satisfactory. A protein intake of 1.25 g kg-1 was required to achieve a level of nitrogen retention often considered optimal for normal growth; however, this infant demonstrated an elevated excretion of methylmalonic acid and was close to clinical illness at this level of protein intake. The 13-month-old infant demonstrated a normal level of nitrogen retention, minimal excretion of methylmalonic acid, and a satisfactory rate of growth at protein intakes of 1.0-1.17 g kg-1. The values should prove useful guidelines for the management of infants requiring minimal intakes of protein. In studies carried out at 18-20 months of age, supplementation of the basic diet containing 0.75 g kg protein-1 with a mixture of amino acids not containing the precursors of methylmalonic acid was associated with increase of retention of nitrogen and increased concentrations of some essential amino acids in plasma, but effects on growth and the excretion of methylmalonic acid were not significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.