Abstract

Accurate characterization of thin films and geometric features including the cavities during and after the fabrication process is crucial for proper CMUT operation, reliability, consistent array operation, and improved yield. Three different optical profilometry techniques: white light interferometry, laser confocal microscopy, and structural grid illumination microscopy have been reviewed in this paper with a focus on characterization of various thin films and geometric features during different CMUT fabrication stages and post processing. The relative merits of each technique have been investigated experimentally in the context of CMUT fabrication for better characterization and process development. The surface roughness and diaphragm deformation results have also been compared with AFM data. From the review, it appears that characterization needs of CMUTs are unique and a combination of complex diversified characterization tools is necessary to generate sufficient data for design verification and functional optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.