Abstract
IntroductionAuto contouring models help consistently define volumes and reduce clinical workload. This study aimed to evaluate the cross acquisition of a Magnetic Resonance (MR) deep learning auto contouring model for organ at risk (OAR) delineation in head and neck radiotherapy. MethodsTwo auto contouring models were evaluated using deep learning contouring expert (DLCExpert) for OAR delineation: a CT model (modelCT) and an MR model (modelMRI). Models were trained to generate auto contours for the bilateral parotid glands and submandibular glands. Auto-contours for modelMRI were trained on diagnostic images and tested on 10 diagnostic, 10 MR radiotherapy planning (RTP), eight MR-Linac (MRL) scans and, by modelCT, on 10 CT planning scans. Goodness of fit scores, dice similarity coefficient (DSC) and distance to agreement (DTA) were calculated for comparison. ResultsModelMRI contours improved the mean DSC and DTA compared with manual contours for the bilateral parotid glands and submandibular glands on the diagnostic and RTP MRs compared with the MRL sequence. There were statistically significant differences seen for modelMRI compared to modelCT for the left parotid (mean DTA 2.3 v 2.8 mm), right parotid (mean DTA 1.9 v 2.7 mm), left submandibular gland (mean DTA 2.2 v 2.4 mm) and right submandibular gland (mean DTA 1.6 v 3.2 mm). ConclusionA deep learning MR auto-contouring model shows promise for OAR auto-contouring with statistically improved performance vs a CT based model. Performance is affected by the method of MR acquisition and further work is needed to improve its use with MRL images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.