Abstract
An extensive bio-optical data set from field measurements was used to evaluate the performance of standard Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color (in-water) algorithms in the Baltic Sea, which represents an example of optically complex Case 2 waters with high concentration of colored dissolved organic matter (CDOM). The data set includes coincident measurements of radiometric quantities, chlorophyll a concentration (Chl a), and absorption coefficient of CDOM, which were taken on 25 cruises between 1993 and 2001. The data cover a wide range of variability with Chl a in surface waters from about 0.3 to 100 mg m −3. All the MODIS pigment algorithms examined as well as the SeaWiFS OC4v4 algorithm showed a systematic and large overestimation in chlorophyll retrievals. The mean systematic and random errors based on our entire data set exceeded 150% or even 200% in some cases, making these standard algorithms inadequate for pigment determinations in the Baltic. Although new parameterization of the standard pigment algorithms based on our field measurements in the Baltic resulted in a significant reduction of errors, the overall performance of such regionally tuned algorithms remained unsatisfactory. For example, the mean normalized bias (MNB) for the regionally tuned MODIS chlor_a_2 algorithm was reduced to 26% (from over 200% for the standard algorithm), but the root mean square (RMS) error was still large (>100%). The MODIS K_490 algorithm for estimating the diffuse attenuation coefficient of downwelling irradiance showed the best performance among all the algorithms examined. With the new coefficients based on our field data, the regional version of this algorithm showed an acceptable level of errors, MNB=4% and RMS=30%. In addition to the apparent problems of the standard in-water bio-optical algorithms, we found that the atmospheric correction currently in use for MODIS and SeaWiFS imagery usually fails to retrieve upwelling radiances emerging from the Baltic Sea. The match-up comparisons of the coincident in situ and satellite determinations of normalized water-leaving radiances showed generally poor agreement, especially in the blue spectral region. It appears that new approaches for ocean color algorithms are required in the Baltic Sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.