Abstract

Microplastics (MPs) contamination of marine environments poses a significant ecological risk, although impacts on species’ realized niche spaces remain unclear. The current study investigates MPs distribution across pelagic habitats, benthic sediments, and key biota in the South Yellow Sea, China. Samples were collected via trawling across estuarine transects, and tissues were digested to extract MPs. Density gradient separations and vacuum-filtrations prepared particle extracts for ATR-FTIR and Micro-Raman spectroscopic characterization. Sampling along industrialized river transects reveals ubiquitous plastic particle presence, with concentrations ranging from 0 to 51.68 item/L seawater. Contamination levels reach their peak at station estuaries before dispersing offshore, indicating significant waste stream inputs. Importantly, MPs detected in demersal and pelagic fish species, as well as in bivalves, confirm exposure across trophic niches. Gastrointestinal tract and gill concentrations reached 0.6 items/g fresh tissue, reflecting significant biological uptake and in vivo retention. The greatest population of organisms occurred adjacent to polluted areas. Overall, distribution of MPs from polluted rivers to coastal food webs was evident, suggesting potential negative impacts on key ecological functions in this system. These findings underscore the need to develop upstream mitigation efforts so as to minimize MPs contamination in areas where nearshore and offshore niches intersect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.