Abstract

Summary A study was conducted to investigate the feasibility of using lignosulfonate as a sacrificial agent in the surfactant flooding process. An analytical technique based on high-performance liquid chromatography (HPLC) analysis was used to determine the concentration of lignosulfonate and petroleum sulfonate. Lignosulfonate and petroleum sulfonate adsorption isotherms were established and used to assess the sacrificial effect of lignosulfonate. A simple model to describe the ion exchange in the presence of lignosulfonate was developed. This model includes the association of cations with lignosulfonate. The main results of this study are as follows. First, surfactant loss can be reduced significantly (>50% reduction) by pretreatment with a lignosulfonate preflush. However, no significant reduction is obtained when lignosulfonate is incorporated with the surfactant slug. Second, more cations are exchanged from the rock in the presence of lignosulfonate. This enhanced cation exchange is a result of the association of divalent cations with lignosulfonate. Third, lignosulfonate causes dissolution of soluble minerals to a much greater extent than brine or petroleum sulfonate, producing undesirable bivalent cations. Finally, the brine tolerance and optimal salinity of petroleum sulfonate are not greatly affected by lignosulfonate. From these laboratory results, we conclude that lignosulfonate has potential as a sacrificial adsorbate for surfactant flooding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.