Abstract

In March 2017, NIST (National Institute of Standards and Technology) has announced to create a portfolio of lightweight algorithms through an open process. The report emphasizes that with emerging applications like automotive systems, sensor networks, healthcare, distributed control systems, the Internet of Things (IoT), cyber-physical systems, and the smart grid, a detailed evaluation of the so called light-weight ciphers helps to recommend algorithms in the context of profiles, which describe physical, performance, and security characteristics. In recent years, a number of lightweight block ciphers have been proposed for encryption/decryption of data which makes such choices complex. Each such cipher offers a unique combination of resistance to classical cryptanalysis and resource-efficient implementations. At the same time, these implementations must be protected against implementation-based attacks such as side-channel analysis. In this paper, we present a holistic comparison study of four lightweight block ciphers, PRESENT, SIMON, SPECK, and KHUDRA, along with the more traditional Advanced Encryption Standard (AES). We present a uniform comparison of the performance and efficiency of these block ciphers in terms of area and power consumption, on ASIC and FPGA-based platforms. Additionally, we also compare the amenability to side-channel secure implementations for these ciphers on ASIC-based platforms. Our study is expected to help designers make suitable choices when securing a given application, across a wide range of implementation platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call