Abstract
AbstractIn 1941, Kolmogorov postulated that the energy distribution of turbulence, across a particular range of eddy sizes cascading to dissipation, could be uniquely described as a universal −5/3 power law. This theory was readily accepted as the basis for conceptualizing the phenomenological characteristics of turbulence and remains central to continued experimental and theoretical developments in turbulence study. However, the theory's own validity lacks final certainty. Here we present the first observation‐based evaluation of Kolmogorov's power law within the atmospheric flow above the ocean. Using a unique platform and a novel analytical approach, we found that the expected power law varies systematically with height above the surface and the local environmental state. Our findings suggest that Kolmogorov's idealized value (−5/3) is approximately valid but, under certain conditions, may depend strongly on the unique processes and dynamics near the ocean surface. This discovery should motivate a reevaluation of how Kolmogorov's framework is applied to geophysical turbulence in the vicinity of the air‐sea interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.