Abstract
The performance of minimonitors used by the U.S. Geological Survey for continuous measurement of water temperature, specific conductance, and pH in four low ionic strength streams in the Catskill Mountains of New York was evaluated through a calculation of their bias, precision, and accuracy and by comparison with laboratory measurements of specific conductance and pH on samples collected concurrently. Results indicate that the mini-monitor measurements of specific conductance and pH in an acidic stream (acid-neutralizing capacity always less than 0) agreed with laboratory measurements well enough that the minimonitors can be used to supplement laboratory measurements (mean difference in pH was 0.02 pH unit and mean difference in specific conductance was 0.72 μS cm−1. This mean difference was 0.32 μS cm−1 if the minimonitor data were adjusted by the bias). In less acidic streams (two streams in which the acid-neutralizing capacity was always greater than 0 and one in which the acid-neutralizing capacity was greater than 0 except during high flows), there was poor agreement between laboratory and minimonitor measurements of specific conductance at high flows and pH at all flows. The water-temperature probes measured with sufficiently small bias (–0.1 °C) and adequate precision (±0.70 °C) for use with most applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.