Abstract

This study evaluates the spatial patterns of flows generated from geo-located Twitter data to measure human migration. Using geo-located tweets continuously collected in the U.S. from 2013 to 2015, we identified Twitter users who migrated per changes in county-of-residence every two years and compared the Twitter-estimated county-to-county migration flows with the ones from the U.S. Internal Revenue Service (IRS). To evaluate the spatial patterns of Twitter migration flows when representing the IRS counterparts, we developed a normalized difference representation index to visualize and identify those counties of over-/under-representations in the Twitter estimates. Further, we applied a multidimensional spatial scan statistic approach based on a Poisson process model to detect pairs of origin and destination regions where the over-/under-representativeness occurred. The results suggest that Twitter migration flows tend to under-represent the IRS estimates in regions with a large population and over-represent them in metropolitan regions adjacent to tourist attractions. This study demonstrated that geo-located Twitter data could be a sound statistical proxy for measuring human migration. Given that the spatial patterns of Twitter-estimated migration flows vary significantly across the geographic space, related studies will benefit from our approach by identifying those regions where data calibration is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.