Abstract

A new procedure to predict achievable fusion gain in a sub-ignition fusion reactor is proposed. This procedure uses the direct profile extrapolation (DPE) method based on the gyro-Bohm model. The DPE method has been developed to predict the radial profiles in a fusion reactor sustained without auxiliary heating (i.e., in the self-ignition state) from the experimental data. To evaluate the fusion gain in a fusion reactor sustained with auxiliary heating (i.e., in the sub-ignition state), the DPE method is modified to include the influence of the auxiliary heating. The beta scale factor from experiment to reactor is assumed to be 1. Under this assumption, it becomes reasonable to apply the magnetohydrodynamic (MHD) equilibrium (which is calculated to reproduce the experimental data) to the reactor. At the same time, the MHD stability of the reactor plasma is also guaranteed to a certain extent since that beta was already proven in the experiment. The fusion gain in the helical type nuclear test machine FFHR-c1 has been evaluated using this modified DPE method. FFHR-c1 is basically a large duplication of the Large Helical Device (LHD) with a scale factor of 10/3, which corresponds to the major radius of the helical coils of 13.0 m and the plasma volume of ∼1000 m3. Two options with different magnetic field strengths are considered. The fusion gain in FFHR-c1 extrapolated from a set of radial profile data obtained in LHD ranges from 1 to 7, depending on the profiles used together with the assumptions of the magnetic field strength and the alpha heating efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.